

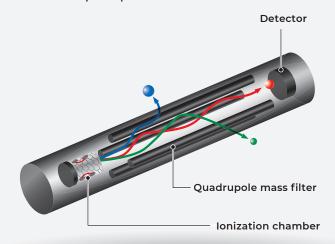
Online gas analyzer

BELMASS

 $1\sim$ 200 a.m.u.

For qualitative and quantitative gas analysis

FEATURES


- Bench-top quadrupole mass spectrometer
- Heat hose enables vapor analysis
- For both qualitative and quantitative analysis

PRINCIPLE

Gas molecules are ionized in ionization chamber and travel down the quadrupole mass filter to the detector. The quadrupole mass filter consists of four parallel rods. Radio frequency voltage with a DC offset voltage is imposed between one pair of rods and the other. The applied voltage affects the trajectory of the ions. Only ions of a certain m/z (mass to charge ratio) will reach the detector for a given ratio of voltages: other ions will be thrown out and collide with the rods. A mass spectrum can be obtained by monitoring the ions passing through the quadrupole mass filter as the voltages on the rods are varied.

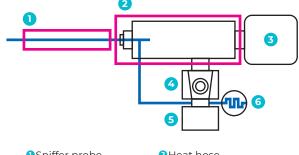
Overview of quadrupole mass detector

OVERVIEW

Mass detector is known as the most efficient detector for qualitative analysis.

However, at the same time, it has poor quantitative capacity. Because it only analyzes a small amount of gas, it is difficult to obtain the good quantitative result.

By selecting the most appropriate materials and


component layout, Microtrac MRB has successfully produced

"BELMASS II" with a high quantitative capacity.

Even ammonia gas can be analyzed easily

by using the heat hose and dry diaphragm pump.

Outline of the system

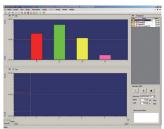
- Sniffer probe
- 6 Mass analyzer
- Oiaphragm pump
- Heat hose
- 4 Turbo molecular pump
- **6** Vacuum gauge

MEASUREMENT SOFTWARE

- I Strength of each component is continuously measured
- I Start and end of measurement can be set within a specified time range by timer setting
- I External data such as temperature can be imported by analog signal input
- I Linear, logarithmic and auto scaling are available for the vertical axis
- I Linkage with the BELCAT series catalyst analyzer is available

Selected Ion monitor

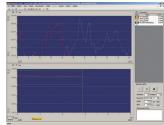
- I Up to 16 mass numbers can be selected and monitors the time-lapse ion current.
- I This mode is useful in case the kinds of reaction gases are known.


Mass peak monitor

- Mass peak monitoring continuously scans the set mass number range and displays the spectra.
- I This mode is useful in case the kinds of reaction gases are unknown.

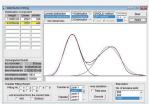
Status check

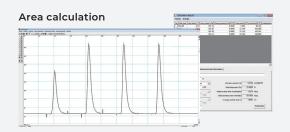
- I Self-diagnosis function.
- I Easy maintenance.


Selected Ion monitor

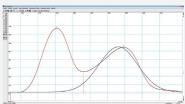
Status check

Mass peak monitoring


ANALYSIS SOFTWARE

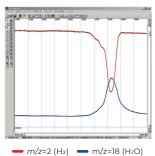

The Obtained mass spectrum can be analyzed with the MicrotracMRB original analysis software "ChemMaster II".

- I The spectrum can be edited and the area can be calculated in this program.
- I Useful functions, such as "Base line correction", "Spike noise filter", etc. will make accurate chemisorption amount calculations.
- I "Distribution Fitting", a sophisticated peak deconvolution function can divide the measured spectrum into multiple peaks so that the number of active sites existing on the catalyst surface can be obtained.
- I The pulse measurement spectrum can also be analyzed.


 The chemisorption amount, metal dispersion rate, and other properties can be calculated automatically.

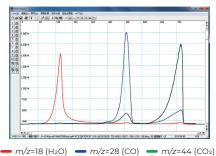
Distribution Fitting

MESUREMENT EXAMPLE


Connecting BELMASS II with the BELCAT series makes it possible to evaluate the catalytic reaction (TPReaction) in more detail.

BELMASS II can record the sample temperature.

Suitable for thermal analysis.


I TPR measurement on CuO

Hydrogen consumption and water production can be observed at the same time.

I Thermal decomposition of calcium oxalate

By heating the sample, H₂O, CO and CO₂ can be detected.

CONNECTION TO PRODUCTS

BELCAT II + BELMASS II

Connecting BELMASS II to the following products, enables these applications.

Model	Application
BELCAT II Catalyst analyzer	TPD, TPR, TPO, Pulse measurement,
	Catalytic reaction,
	Breakthrough curve measurement

****BELMASS II also can be used with a range of other instruments.**

SPECIFICATIONS

Mass range	1~200 a.m.u	
detector	Faraday cup / SEM	
Min. detection limit	< 1 ppm. (Depends on the gas.)	
Resolution	M/⊿M≧2M	
Scan speed	Auto, 0.01, 0.03, 0.1, 0.3, 1, 3, 10 sec / a.m.u	
Sniffer probe	1/16 inch capillary tube	
Max. temperature of heat hose	200°C (SUS), 120°C (PEEK) (Option)	
Gas consumption rate	Approximately 0.6 cc/min (at latm)	
Sample gas pressure	Atmospheric pressure (50∼150 kPa)	
Vent connection	1/4 inch one-touch connection	
Measurement channels	Max. 16 ch	
Measurement Software Quadvision2	Selected Ion monitor	
	Mass peak monitor	
Analysis Software ChemMaster II	Spectrum image display	
	Distribution Fitting	
	Aera Calculation	
	Convert to Temp. Axis	
	Metal dispersion calculation	
Other functions	System check	
	Analog input	
	Conversion of the saved data into CSV	
Interface	RS232C	
Analog input	1 CH (DC 0∼10 V, mainly used as a temperature input.)	
Dimensions, Weight	280 (W) × 400 (H) × 600 (D) mm, 36 kg	

^{*}This product complies with CE and UKCA

*Specifications and appearance of the products listed are subject to change without notice.

**Products (goods and services) described in the catalog, depending on the destination and application, might be applicable to export regulations, etc. by the "Foreign Exchange and Foreign Trade Control Law".

In response to the review of the Japanese government regarding the export of products (goods and services), permission and approval, and the like, must be obtained according to the regulations.

MICROTRAC

PARTICLE CHARACTERIZATION

Microtrac Inc.

215 Keystone Drive • PA-18936 Montgomeryville • USA

Microtrac Retsch GmbH

Retsch-Allee 1-5 • 42781 Haan • Germany Phone: +49 2104 2333 300 • info@microtrac.com

MicrotracBEL Corp.

8-2-52 Nanko Higashi, Suminoe-ku • Osaka 559-0031 • Japai

www.microtrac.com

^{*}Due to our policy of continuous improvement, the specifications are subject to change without notice.